On the Relationship between Projective Distributive Lattices and Boolean Algebras
نویسنده
چکیده
The main result of this paper is the following theorem: If a projective Boolean algebra B is generated by its sublattice L, then there is a projective distributive lattice D which is a sublattice of L and generates B.
منابع مشابه
Profinite Heyting Algebras and Profinite Completions of Heyting Algebras
This paper surveys recent developments in the theory of profinite Heyting algebras (resp. bounded distributive lattices, Boolean algebras) and profinite completions of Heyting algebras (resp. bounded distributive lattices, Boolean algebras). The new contributions include a necessary and sufficient condition for a profinite Heyting algebra (resp. bounded distributive lattice) to be isomorphic to...
متن کاملDiscrete duality and its application to bounded lattices with operators
Duality theory emerged from the work by Marshall Stone [18] on Boolean algebras and distributive lattices in the 1930s. Later in the early 1970s Larisa Maksimova [10, 11] and Hilary Priestley [15, 16] developed analogous results for Heyting algebras, topological Boolean algebras, and distributive lattices. Duality for bounded, not necessarily distributive lattices, was developed by Alstir Urquh...
متن کاملBoolean Algebras and Distributive Lattices Treated Constructively
Some aspects of the theory of Boolean algebras and distributive lattices -in particular, the Stone Representation Theorems and the properties of filters and ideals -are analyzed in a constructive setting.
متن کاملOn Recovering a Bounded Distributive Lattice from Its Endomorphism Monoid
The sub algebra functor Sub A is faithful for Boolean algebras (Sub A •Sub B implies A • B, see D. Sachs [7] ), but it is not faithful for bounded distributive lattices or unbounded distributive lattices. The automorphism functor Aut A is highly unfaithful even for Boolean algebras. The endomorphism functor End A is the most faithful of all three. B. M. Schein [8] and K. D.' Magill [5] establis...
متن کاملA categorical equivalence for distributive Stonean residuated lattices
Stonean residuated lattices are closely related to Stone algebras since the bounded lattice reduct of a distributive Stonean residuated lattice is a Stone algebra. In the present work we follow the ideas presented by Chen and Grätzer and try to apply them for the case of Stonean residuated lattices. Given a Stonean residuated lattice, we consider the triple formed by its Boolean skeleton, its a...
متن کامل